Pairwise classification using quantum support vector machine with Kronecker kernel
نویسندگان
چکیده
Abstract We investigated the potential application of quantum computing using Kronecker kernel to pairwise classification and have devised a way apply Harrow-Hassidim-Lloyd (HHL)-based support vector machine algorithm. Pairwise can be used predict relationships among data is for problems such as link prediction chemical interaction prediction. However, in kernel, it very costly calculate product matrices when there large amount data. found that represented more efficiently time space than classical computing. also classifier effectively trained by applying HHL-based algorithm matrix. In an experiment comparing with run on simulator, misclassification rate latter was almost same former problem some cases. This indicates achieve accuracy equivalent scalably. finding paves learning predicting large-scale
منابع مشابه
Text Classification Using Support Vector Machine with Mixture of Kernel
Recent studies have revealed that emerging modern machine learning techniques are advantageous to statistical models for text classification, such as SVM. In this study, we discuss the applications of the support vector machine with mixture of kernel (SVM-MK) to design a text classification system. Differing from the standard SVM, the SVM-MK uses the 1-norm based object function and adopts the ...
متن کاملSupport Vector Machine Approximation using Kernel PCA
Support Vector Machine is a very important technique used for classification and regression. Although very accurate, the speed of SVM classification decreases with increase in the number of support vectors. This paper describes one method of reducing the number of support vectors through the application of Kernel PCA. This method is different from other proposed methods as we show that the exac...
متن کاملMODELING OF FLOW NUMBER OF ASPHALT MIXTURES USING A MULTI–KERNEL BASED SUPPORT VECTOR MACHINE APPROACH
Flow number of asphalt–aggregate mixtures as an explanatory factor has been proposed in order to assess the rutting potential of asphalt mixtures. This study proposes a multiple–kernel based support vector machine (MK–SVM) approach for modeling of flow number of asphalt mixtures. The MK–SVM approach consists of weighted least squares–support vector machine (WLS–SVM) integrating two kernel funct...
متن کاملRanking Support Vector Machine with Kernel Approximation
Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (Ran...
متن کاملEfficient Kernel Approximation for Large-Scale Support Vector Machine Classification
Training support vector machines (SVMs) with nonlinear kernel functions on large-scale data are usually very timeconsuming. In contrast, there exist faster solvers to train the linear SVM. We propose a technique which sufficiently approximates the infinite-dimensional implicit feature mapping of the Gaussian kernel function by a low-dimensional feature mapping. By explicitly mapping data to the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quantum Machine Intelligence
سال: 2022
ISSN: ['2524-4906', '2524-4914']
DOI: https://doi.org/10.1007/s42484-022-00082-0